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Lecture 14:

* A Story about Expectation: "Regression to the Mean"
 Variance and Standard Deviation of Discrete Random Variables

* Properties of Variance and Standard Deviation

* Variance and Standard Deviation of Standard Distributions
 Other Single-Value Measures of Random Variables
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* Limit Theorems [ if time ]



Revi F . . Alternate notation for
eview: kLxpectation: expected value:

Expected Value of a Random Variable: ux = EX)

or just p if X is obvious.

E(X) = E k- P(X = k)

kERy

Properties of Expectation:

Obvious fact:
Linearity of Expection for (Arbitrary) Random Variables

For any constant a,

E(a*X+b) =a*E(X) +b for constants a and b

E =
Linearity of Sums of (Arbitrary) Random Variables: (@) =a

I.ess obvious but also

E(X+Y) = EX) + E(Y)

true:

Linearity of Products of Independent Random Variables: E(EX)) = E(X)

E(X-Y) = EX)+E®Y)



A Story about Expectation: "Regression to the Mean"

The greatest challenge in understanding the role of randomness
in life is that although the basic principles of randomness arise from
everyday logic, many of the consequences that follow from those
principles prove counterintuitive. Kahneman and Tversky's studies
were themselves spurred by a random event. In the mid-1960s, Kah-
neman, then a junior psychology professor at Hebrew University,
agreed to perform a rather unexciting chore: lecturing to a group of
Israeli air force flight instructors on the conventional wisdom of
behavior modification and its application to the psychology of flight
training. Kahneman drove home the point that rewarding positive
behavior works but punishing mistakes does not. One of his students
interrupted, voicing an opinion that would lead Kahneman to an
epiphany and guide his research for decades.®

“I've often praised people warmly for beautifully executed
maneuvers, and the next time they always do worse,” the flight
instructor said. “And I've screamed at people for badly executed
maneuvers, and by and large the next time they improve. Don't tell

THE DRUNKARD’S WALK

me that reward works and punishment doesn’t work. My experience
contradicts it.” The other flight instructors agreed. To Kahneman the
flight instructors” experiences rang true. On the other hand, Kahne-
man believed in the animal experiments that demonstrated that
reward works better than punishment. He ruminated on this appar-
ent paradox. And then it struck him: the screaming preceded the
improvement, but contrary to appearances it did not cause it.
How can that be? The answer lies in a phenomenon called regres-

sion toward can. That is, in any series of random events an
extraordinary event is most likely to be followed, due purely to
chance, by a more ordinary one. Here is how it works: The student
pilots all had a certain personal ability to fly fighter planes. Raising
their skill level involved many factors and required extensive prac-
tice, so although their skill was slowly improving through flight train-
ing, the change wouldn’t be noticeable from one maneuver to the
next. Any especially good or especially poor performance was thus
mostly a matter of luck. So if a pilot made an exceptionally good
landing—one far above his normal level of performance —then the
odds would be good that he would perform closer to his norm —that
is, worse—the next day. And if his instructor had praised him, it
would appear that the praise had done no good. But if a pilot made
an exceptionally bad landing—running the plane off the end of the
runway and into the vat of corn chowder in the base cafeteria—then
the odds would be good that the next day he would perform closer to
his norm—that is, better. And if his instructor had a habit of scream-
ing “you clumsy ape” when a student performed poorly, it would
appear that his criticism did some good. In this way an apparent pat-
tern would emerge: student performs well, praise does no good; stu-
dent performs poorly, instructor compares student to lower primate
at high volume, student improves. The instructors in Kahneman’s
class had concluded from such experiences that their screaming was
a powerful educational tool. In reality it made no difference at all.
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Discrete RandomVariables: Variance

Variance of a Random Variable:
Var(X) =g E[(X — px )]

Example: X, = “Flip a coin and return the number of heads showing”
X, = “Flip a coin and return 100 * the number of heads showing”

Ry, = {0,1} Py = {

1

1 EX)=05

11
272
Ry, = {0,100} Py, ={3.7} EX)=50

E;
=

e
4

Ry, _osp = {025}  Fixosp = {10} E[(X; —0.5)*]=0.25 - > o

mes

Ry,_sop = {2500} Py _so0 = {1.0} E[ (X, — 50)2] = 2500

But this is not very intuitive! ~ And what about the units?
If these are dollars, then this is 2500 squared dollars...




Discrete RandomVariables: Standard Deviation

Therefore a more common measure of spread around the mean is the
Standard Deviation:

OX =def \/VCU‘(X)

Ry, =1{0,1} P, =1{11} EX)=05

1
2
Ry, = {0,100} Py, ={3.5} EX)=50
Rix, 052 = 1025} Pix,—os2 = {1.0} Var(X;) =0.25 ox, = 0.5

Ry, _sop = 12500}  FPon-s02 = {10} Var(Xp)= 2500 oy, = 50

This has all the advantages of the variance, plus three more:
o It explains simple examples;
o The units are correct; and

o It corresponds to a well-known geometric notion, the Euclidean Distance....



Discrete RandomVariables: Variance and StdDev

Let's apply this idea to our games:

Game One: For $1 per round, you can flip a coin, and I'll give you $11 (net: $10) if
heads appears, and nothing if tails appears (net: -$1). Call this the random variable X, :

E(X;) =10-1-1-(1-2) = $4.50

Game Two: For $1 per round, you can flip a coin 20 times, and if you get 20 heads, I'll
give you $5,767,168, else you lose the $1. Call this the random variable X, :

E(X,) = 5,767,167 - 2;, -1-(1- ZL) = $4.50

Var(X,) = E[(X; — ux)?] Var(X;) = E[(X; — ux)*]
- 4.5)2 -1 -4.5)2 5,767,167 — 4.5)2 20 _1
_ (10-452 (-1-45) _ ( ) +(_5_5)z,2
2 2 220 220
_ 55%+(=5.5 =131, 719:395.75
2 -~ N
= 5.5 ’$ \
' 5,631
= 30.25 % % ,
P S N ~ _ - 7’

GX! ’—l\$550 ,\

~ e




Discrete RandomVariables: Variance and StdDev

Useful formulae for the Variance and Standard Deviation:

Theorem:
Var(X) = E(X?) - E(X)
Proof:
Var(X) = E[(X — E(X))*]
2 2
= E[ X" —2- X E(X) + E(X)" ] Recall that
= E(X%) -2 E(X)- E(X) + E(X)* E(X) is a
- E(Xz) - E(X)2 constant!
Var(X,) = E(X}) - E(X,)
Var(X,) = E[(X; — ux)*] E(X2) = (5’7672’0167)2 +(~1)- 2202;1
_ (5,767,167 — 4.5)° +(=5.5)2 . 2% =1 ~ 31,719,413 + 1 = 31,719, 414

220 220

Var(X,) = 31,719,414 — 4.5>
31,719, 393.75

= 31,719,393.75
$5, 631 ox, = $5,631




Discrete RandomVariables: Variance and StdDev

Useful formula for the Variance and Standard Deviation, showing that variance and the
standard deviation are NO'T linear functions:

Theorem: Var(aX + b) = a* = Var(X)
Proof:

Var(aX +b) = E[((@X +b) — pax+p )* |

= E ((aX+b)—(a,uX+b))2]

=E:(a(X—uX>)2]

Corollary:

= E|a* * (X — ux )?

Oux+b — |Cl| % Oy

=izt *E[(X—ﬂx)z

= a* * Var(X)



Discrete RandomVariables: Variance and StdDev

However, independence, as usual, makes things simpler:
Theorem: (Variance of Sum of Independent Random Variables)

Let X and Y be independent random variables, then
Var(X+Y) = Var(X) + Var(Y)

Proof:

Var(X +Y) = E[(X +Y)*] - E(X +Y)?
= E[X? + 2XY + Y?] - (E(X) + EQY))?
= E(X?) +2E(XY)+ EY?) - [ E(X)? -2EQY)EQY) - EQY)?]
= E(X?) - E(X)? + EY?) - EY)? +2[ E(XY) - EQX)E®Y)]
=VarX)+Vary)

This term is called the Covariance of X

and Y, Cov(X,Y), and measures how
much they “vary together”. For
independent RV, Cov(X,Y) = 0.

This will be back in a few weeks....



Variance of Standard Distributions

X ~ Bernoulli(p)

E(X) =p
Var(X) = E(X?) — E(X)?
= E(X) - p°
=p:(lL=p)

Z ~ Geometric(p)

E(Z) = 1/p

Var(Z) = %

Y ~ Binomial(N, p)

Y=X1+X2+”'+XN
EY)= N-p
Var(Y) = N -p- (1 —p)

W ~ Pascal(m, p)

W=2Z+2Z++2Z,

EW) = =
p
Varw) = ™1 =P

p2





